Chem. Ber. 114, 3070 - 3078 (1981)

Molekül- und Kristallstrukturen zweier Carbodiphosphorane mit P - C - P-Bindungswinkeln nahe 120°

Ulrich Schubert*, Charles Kappenstein^{a)}, Beatrix Milewski-Mahrla und Hubert Schmidbaur

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 3. Februar 1981

sym-Dimethyltetraphenylcarbodiphosphoran (1) und das cyclische Carbodiphosphoran 2 haben im Kristall mit 121.8 (3) bzw. 116.7 (7)° die kleinsten P = C = P-Bindungswinkel, die bisher bei Vertretern dieser Verbindungsklasse gefunden wurden. Die ylidischen P = C-Bindungslängen (164.8 (4) pm bei 1, 164.5 (12) bzw. 165.3 (14) pm bei 2) liegen im Doppelbindungsbereich. Bei 1 sind zwei Phenylringe mit einem Abstand von 328 pm parallel zueinander; im Kristall bilden sich Phenylring-Schichten aus. Diese günstige Packung der Phenylgruppen dürfte die Ursache für den kleinen P-C-P-Bindungswinkel sein, dessen leichte Deformierbarkeit damit erneut unter Beweis gestellt wird.

Molecular and Crystal Structures of Two Carbodiphosphoranes with P-C-P Bond Angles Near 120°

sym-Dimethyltetraphenylcarbodiphosphorane (1) and the cyclic carbodiphosphorane 2 show in the crystalline state the smallest P = C = P bond angles (121.8 (3) and 116.7 (7)°, respectively) observed so far among compounds of this type. The lengths of the ylidic P = C bonds (164.8 (4) pm in 1, 164.5 (12) and 165.3 (14) pm in 2) are within the double bond range. In 1 two phenyl rings are parallel with a mutual distance of 328 pm; in the crystal phenyl ring layers are formed. This favourable packing of the phenyl groups should be the reason for the small P - C - P bond angle, whose easy bending is thus demonstrated again.

Bei Strukturuntersuchungen an Allenen¹⁾ und Heteroallenen, X = Y = Z, bei denen X, Y und Z ausschließlich Atome der ersten Achter-Periode sind²), findet man weitgehend lineare Anordnungen der X = Y = Z-Gruppierungen. Geringfügige Abweichungen von der Linearität lassen sich meist auf Packungseffekte im Kristallgitter zurückführen. Dagegen wird teilweise starke Abwinkelung an Y beobachtet, wenn man X und/oder Z durch Phosphoratome ersetzt^{3,4)}. Derartige Verbindungen besitzen erhebliches präparatives und theoretisches Interesse.

Aus der Verbindungsklasse der Carbodiphosphorane, $R_1P = C = PR_1$, sind von Hexaphenylcarbodiphosphoran eine kubische⁵), eine monokline²) und eine orthorhombische⁶) Kristall-Modifikation bekannt. Bei Röntgenstrukturanalysen der beiden letzteren fanden sich P = C = P-Bindungswinkel von 131.7° (orthorhombische Modifikation) bzw. 130.1 und 143.8° (zwei Moleküle in der asymmetrischen Einheit der monoklinen Modifikation). Diese Werte, sowie die Ergebnisse der Elektronenbeugungs-Untersuchungen an Hexamethylcarbodiphosphoran⁷), $Me_3P = C = PMe_3$, deuten auf eine große Flexibilität des P = C = P-Bindungswinkels hin. Vorläufige INDO-Berech-

Chem. Ber. 114 (1981)

^{a)} Ständige Adresse: Université de Reims, Laboratoire de Chimie minerale, F-51062 Reims.

nungen⁸⁾ am Grundkörper dieser Verbindungsklasse, $H_3P = C = PH_3$, hatten ein Energieminimum bei einem Winkel von etwa 130° und eine Energiedifferenz von ca. 50 kJ/mol zu den 120°bzw. 140°-Formen ergeben. Ab-initio-Berechnungen an der gleichen Verbindung³⁾ zeigen jedoch, daß die zur Deformation des P = C = P-Winkels benötigte Energie wahrscheinlich wesentlich geringer ist: Zur Öffnung des im Energieminimum gefundenen Winkels von 113° auf 140° werden 22.2 kJ/mol berechnet. Daraus kann geschlossen werden, daß die im Kristall beobachteten P - C - P-Winkel stark von Packungseffekten beeinflußt sein können. Eine vergleichbare Situation findet man auch bei Salzen mit dem zu $Ph_3P = C = PPh_3$ isoelektronischen $Ph_3P = N = PPh_3^+$ -Kation. Hier führen ebenfalls intermolekulare Wechselwirkungen im Kristall zu stark unterschiedlichen P - N - P-Winkeln⁴). Die leichte Deformierbarkeit der P = C = P-Gruppierung haben Schmidbaur et al. veranlaßt, dieses Strukturelement in Ringsysteme einzubauen^{9,10}.

Wir berichten hier über die Röntgenstrukturanalysen zweier Carbodiphosphorane, sym-Dimethyltetraphenylcarbodiphosphoran (1) und 1,1,3,3-Tetraphenyl-1,3-di- λ^5 phosphacyclohexan (2), die sich durch besonders kleine Winkel am zentralen Kohlenstoffatom der P = C = P-Einheit auszeichnen. Die vorläufigen Ergebnisse wurden bereits publiziert^{5,9}.

Experimentelles

Zellkonstanten: 1: monoklin, a = 2204 (3), b = 1019.8 (9), c = 1029 (1) pm, $\beta = 109.97$ (9)°, $V = 2174 \cdot 10^6$ pm³. Raumgruppe C2/c, Z = 4, ρ (ber.) = 1.26 g/cm³. Kristallgröße 0.2 × 0.25 × 0.35 mm. 2: hexagonal, a = b = 1034.6 (5), c = 3679 (2) pm, $V = 3410 \cdot 10^6$ pm³ (-20 °C). Raumgruppe P6₅ bzw. P6₁, Z = 6, ρ (ber.) = 1.24 g/cm³ (die Struktur wurde in P6₅ gelöst). Kristallgröße ca. 0.2 × 0.2 × 0.3 mm.

Bestimmung der Zellkonstanten und die Intensitätsmessungen erfolgten auf einem Syntex $P2_1$ -Vierkreisdiffraktometer (bei 2: -20° C) mit Hilfe von Mo- K_{α} -Strahlung (Graphit-Monochromator, $\lambda = 71.069$ pm). Es wurden bei 1 1412 unabhängige Reflexe im Bereich $2^{\circ} \leq 2\Theta \leq 45^{\circ}$ und bei 2 1479 Reflexe im Bereich $2^{\circ} \leq 2\Theta \leq 48^{\circ}$ gesammelt. Nach Lorentz- und Polarisations-Korrektur ergaben sich daraus bei 1 983 Strukturfaktoren mit $F_0 \geq 3\sigma$ und 2 1054 Strukturfaktoren mit $F_0 \geq 3.9\sigma$. Lösung der Strukture erfolgte nach der Patterson-Methode (Syntex XTL). Ein Teil der Wasserstoffatome wurde nach idealer Geometrie berechnet. Das Atom C3 und die daran gebundenen Wasserstoffatome sind bei 2 fehlgeordnet. Die beiden Lagen wurden mit G = 0.5 verfeinert. Verfeinerung erfolgte nach der Methode der kleinsten Quadrate mit der vollständigen Matrix, wobei bei 1 alle Nichtwasserstoffatome, bei 2 nur die beiden Phosphoratome anisotrop behandelt wurden. Der anisotrope Temperaturfaktor ist definiert durch T = $\exp[-\frac{1}{4}(h^2a^{*2}B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33} + 2hka^*b^*B_{12} + 2hla^*c^*B_{13} + 2klb^*c^*B_{23}) (B_{ij}$ in 10^4 pm²). Die Wasserstoffatom-Parameter wurden nicht verfeinert (B = 4.0).

 $R_1 = R_2 = 0.069$ (1) bzw. $R_1 = 0.072$ und $R_2 = 0.059$ (2). In Tab. 1 und 2 sind die Atomparameter, in Tab. 3 wichtige Abstände und Winkel wiedergegeben.

Chem. Ber. 114 (1981)

Atom	x/a	y /b	z/c	8 ₁₁	B22	B33	^B 12	^B 13	B23
P	0.04971(7)	0.1525(2)	0.1885(2)	1.73(6)	1.93(7)	2.14(7)	-0.04(7)	0.61(5)	-0.09(7)
C1	0	0.0739(8)	0.25	2.2(4)	2,2(4)	2.4(4)	0	0.7(3)	0
C2	0.0183(3)	0.2020(6)	0.0076(6)	2.2(3)	2.9(3)	2.7(3)	0.1(2)	0.5(2)	-0.3(2)
C3	0.1189(3)	0.0510(6)	0.1983(5)	1.9(3)	2.6(3)	1.7(3)	0.1(2)	0.5(2)	-0.2(2)
C4	0,1631(3)	0.0891(6)	0.1369(6)	2.9(3)	2.1(3)	4.0(3)	0.2(3)	1.7(3)	0.0(3)
C 5	0,2163(3)	0.0121(7)	0.1479(7)	2.2(3)	4.5(4)	3.9(3)	-0.2(3)	1.4(3)	-0.8(3)
C6	0.2256(3)	~0.1041(7)	0.2195(7)	2.1(3)	3.7(4)	3.4(3)	0.6(3)	0.4(3)	-0.5(3)
C7	0.1826(3)	-0.1436(7)	0.2806(6)	3.2(3)	3.2(3)	3.5(3)	1.5(3)	0.8(3)	1.0(3)
C8	0.1286(3)	-0.0663(6)	0.2692(6)	2.5(3)	3.2(3)	2.9(3)	0.3(3)	1.1(2)	0.6(3)
c 9	0.0881(3)	0.3014(6)	0.2796(6)	1.8(3)	2.0(3)	2.7(3)	0.0(2)	1,3(2)	-0.2(2)
C10	0.1301(3)	0.2906(6)	0.4153(6)	2.7(3)	2.5(3)	2.9(3)	-0.3(3)	0.4(3)	0.1(3)
C11	0,1544(3)	0.3986(7)	0.4937(6)	2.4(3)	4.4(4)	3.0(3)	-1.0(3)	0.2(2)	-0.9(3)
C12	0.1366(3)	0.5227(7)	0.4395(7)	3.0(4)	3.7(4)	3.7(4)	-0.4(3)	1.2(3)	-1.3(3)
C13	0.0955(3)	0.5359(6)	0.3075(8)	3.5(4)	2.3(3)	5.0(4)	-0.2(3)	1.5(3)	-0.2(3)
C14	0.0715(3)	0,4268(6)	0,2259(6)	2.5(3)	2.4(3)	3.0(3)	0.0(3)	0.7(2)	0.2(3)

Tab. 1. Atomparameter von 1

Atom	x/a	y/b	z/c	Atom	x/a	у/Ъ	
34	0.1569	0.1734	0.0870	H12	0.1529	0.6012	
H5	0.2487	0.0359	0.1079	E13	0.0825	0.6229	
86	0.2630	-0.1566	0.2274	B14	0.0421	0.4369	
H 7	0.1900	-0.2267	0.3325	B21	0.0546	0.2618	
H8	0.0962	-0.0972	0.3069	B22	0.0144	0.1142	
10	0,1418	0.2011	0.4511	H23	-0,0210	0.2502	
¥11	0.1842	0.3866	0.5872				

Abb. 1. Projektion von 1 auf die Ebene der Phenylringe C9 – C14 bzw. C9* – C14*. Wasserstoffatome wurden der besseren Übersichtlichkeit halber nicht gezeichnet

Chem. Ber. 114 (1981)

Atom	x/a	у/Ъ	#/c	В	Atom	x/a	y/b	s/c
03	0.466(2)	0.253(3)	0,291(1)	3.7(5)	E11	0.0402	0.1002	0.2667
C3A	0.4799(22)	0.3722(22)	0.3007(5)	2.0(4)	B12	-0.1904	-0.1223	0.2497
P1	0.22298(34)	0.18917(37)	0.33300(0)		H13	-0.2688	-0.3452	0.2845
C2	0.3327(13)	0.2779(12)	0.2930(3)	3.4(2)	H14	-0.1551	-0.3340	0.3397
C4	0.5712(12)	0.3043(11)	0.3190(2)	2.8(2)	H15	0.0485	-0.1062	0.3604
C20	0.1416(12)	0.3058(12)	0.3452(3)	3.2(2)	H21	0.1865	0,2982	0.4007
C21	0.1449(12)	0.3376(13)	0.3816(3)	4.0(3)	H22	0.0804	0.4458	0.4204
C22	0.0830(14)	0,4249(15)	0.3929(3)	5.1(3)	H23	-0.0186	0.5390	0.3761
C23	0.0283(14)	0,4808(14)	0.3674(4)	5.1(3)	H24	-0.0223	0.4817	0.3152
C24	0.0287(13)	0.4540(14)	0.3324(3)	4.4(3)	H25	0.1031	0.3519	0.2943
C25	0.0867(14)	0.3644(13)	0.3204(3)	4.5(3)	H31	0.3065	-0.1113	0.3783
C10	0.0615(11)	0.0203(12)	0.3158(3)	3.1(2)	H32	0.3581	-0.3152	0.3752
C11	-0.0066(13)	0.0141(13)	0.2835(3)	3.8(2)	H33	0.5954	-0.2764	0.3630
C15	0.0019(13)	-0.1110(13)	0.3364(3)	3.6(2)	H34	0.7821	-0.0275	0.3459
P 2	0.4829(3)	0,2069(3)	0.3617(1)		E35	0.7467	0,1811	0.3515
C30	0.5235(12)	0.0532(11)	0.3624(3)	2.3(2)	H41	0.5594	0.5003	0.3818
C31	0,4084(12)	-0.0870(12)	0.3705(3)	3.1(2)	E42	0.7202	0.6810	0.4256
C32	0.4392(13)	-0,2080(13)	0.3704(3)	4.2(3)	843	0.8730	0.6224	0.4627
C1	0.3057(12)	0.1582(11)	0.3673(3)	3.4(2)	H44	0.8369	0.3856	0.4614
C40	0.6072(12)	0.3332(13)	0.3964(3)	3.0(2)	H45	0.6825	0,1984	0.4183
C41	0.6171(14)	0.4732(14)	0.3988(3)	4.8(3)	H1C2	0.3754	0.4046	0.2949
C45	0.6919(13)	0.3059(13)	0.4198(3)	3.8(3)	H2C2	0.2725	0.2386	0.2684
C42	0.7172(15)	0,5811(15)	0.4226(4)	5.6(3)	H1C4	0.6646	0.2907	0.3126
C43	0.7967(14)	0.5493(15)	0.4455(3)	5.3(3)	H1C3	0.5479	0.3306	0.2676
C33	0.5774(14)	-0.1813(14)	0.3612(4)	5.1(3)	H2C3	0.4422	0.1472	0.2865
C35	0.6634(13)	0.0746(12)	0.3546(3)	3.6(2)	H1C3A	0.4968	0.4727	0.3163
C34	0.6907(14)	-0.0432(15)	0.3537(3)	4.6(3)	H2C3A	0.5411	0.4251	0.2730
C44	0.7863(13)	0.4126(14)	0.4448(3)	4.6(3)	H2C4	0.6131	0,4276	0.3236
C13	-0.1857(13)	-0.2442(14)	0.2927(3)	4.7(3)	H1C2A	0.2926	0.3492	0,2805
C12	-0.1281(14)	-0.1181(15)	0.2714(3)	4.8(3)	H2C2A	0.3305	0,1997	0.2739
C14	-0.1223(14)	-0.2395(14)	0.3241(3)	4.4(3)	H1C4A	0.5760	0,2286	0.3001
		<u>_</u>			H2C4A	0.6845	0.3974	0.3253
	Atom		22 B33	B ₁₂	B ₁₃	B ₂₃		

Tab. 2. Atomparameter von 2

Abb. 2. Ansicht von 2. Die zweite Lage des fehlgeordneten Atoms C3 und die Wasserstoffatome wurden der besseren Übersichtlichkeit halber nicht gezeichnet

P1

P2

2.8(2)

2.7(2)

4.2(2)

2.7(2)

3.2(1)

2.7(1)

2.3(2)

1.6(1)

0.8(1)

0.5(1)

1.4(1)

0.6(1)

1		2	
P-C1	164.8(4)	P1-01	164.5(12)
		P2-C1	165.3(14)
P-02	182.1(6)	P1-C2	180.3(12)
		P2-C4	184.3(10)
P-C5	181.7(6)	P1-C10	182.4(12)
		P1-C20	184.0(14)
P-C9	183.3(6)	P2-C30	183.8(12)
		P2-C40	181.9(12)
₽C1₽ [®]	121.8(3)	P1-C1-P2	116.7(7)
C1-1-C2	117.2(3)	C1-P1-C2	118.0(6)
		C1-P2-C4	116.4(6)
C1-P-C3	110.9(3)	C1-P1-C10	113.4(6)
C1-P-C9	117.2(3)	C1-P1-C20	113.2(6)
		C1-P2-C30	115.6(6)
		C1-P2-C40	114.1(6)
C2-P-C3	103.5(3)	C2-P1-C10	104.3(6)
C2-P-C9	103.9(3)	C2-P1-C20	104.1(6)
		C4-P2-C30	102.8(5)
		C4-F2-C40	103.0(5)
C3-P-C9	102.3(3)	C10-P1-C20	102.3(5)
		C30-F2-C40	103.0(5)

Tab. 3. Intramolekulare Abstände (in pm) und Winkel (in Grad) in 1 und 2. Analoge Werte sind nebeneinandergestellt

Symm. op. -x,y, 0.5 -z

Beschreibung der Molekülstrukturen*)

1 besitzt im Kristall C_2 -Symmetrie. Die zweizählige Drehachse verläuft durch das zentrale Kohlenstoffatom C1, wodurch beide Molekülhälften symmetrieäquivalent werden. Die Struktur weist gegenüber den verschiedenen Hexaphenylcarbodiphosphoran-Strukturen zwei wesentliche Unterschiede auf (vgl. Tab. 4): (1) Blickt man entlang des P – P-Vektors, dann stehen in 1 die beiden PPh₂Me-Gruppen annähernd auf Lücke zueinander (s. Abb. 1), während bisher immer eclipsed-Stellung der PR₃-Gruppen beobachtet wurde. (2) Man findet in 1 einen P – C1 – P*-Bindungswinkel von 121.8°, der deutlich kleiner ist als die entsprechenden Winkel in den Hexaphenylcarbodiphosphoran-Modifikationen. Er weicht nur wenig von dem bei idealer sp²-Hybridisierung von C1 (Form **B**) zu erwartenden Wert ab und entspricht etwa den P = CR = P-Winkeln in Diphosphinomethanid-Ionen^{8,11)}.

$$\begin{array}{ccc} R_3 P = C = PR_3 & R_3 P \xrightarrow{+} \bar{C} \approx PR_3 & \longrightarrow & R_3 P \xrightarrow{+} \bar{C} \xrightarrow{+} PR_3 \\ A & B \end{array}$$

Sucht man nach einer Ursache für diese Beobachtungen, fällt auf, daß zwei der Phenylringe in 1 (je einer an jedem Phosphoratom: C9 - C14 bzw. $C9^* - C14^*$) exakt parallel zueinander liegen. Ihr gegenseitiger Abstand beträgt 328 pm. Werte dieser Größenordnung, die deutlich kürzer sind als der van-der-Waals-Abstand von Aromaten (340 pm¹²⁾), werden bei der Stapelung von Aromaten in Kristallen häufiger angetrof-

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50033, des Autors und des Zeitschriftenzitats angefordert werden.

	Tał	o. 4. Vergleich vo	on Strukturdaten in	Carbodiphosphora	nen		
$R_3P = C = PR_3$	P = C ≈ P	P = C	P	C = P - C	Torsionswinkel C = P - C - C	Stellung der PR ₃ -Gruppen relativ P – P	Lit.
$\mathbf{R} = C_6 H_5^{a}$ Molekül 1 ^{b)}	143.8 (6)	162.9 (3)	183.3 (6) 185.5 (6) 182.7 (6)	117.8 (2) 109.2 (4) 117.7 (2)	73 9 23	eclipsed	2)
Molekül 2 ^{b)}	130.1 (6)	163.3 (4)	182.3 (6) 184.4 (6) 184.5 (6)	116.1 (2) 109.9 (3) 117.4 (2)	85 2 23	eclipsed	
$\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{5}^{c)}$	131.7 (3)	163.2 (5) 163.8 (5)	183.1 (Mittel)			eclipsed	(9
$R = CH_3$ (Elektronenbeugung)	147.6 (5)	159.4 (3)	181.4 (3)	116.7 (4)			(r
1 b)	121.8 (3)	164.8 (4)	182.1 (6) (CH ₃) 181.7 (6) (Ph) 183.3 (6) (Ph)	117.2 (3) 110.9 (3) 117.2 (3)	30 84	staggered	diese Arbeit
2 ^{d)}	116.7 (7)	164.5 (12)	180 (1) (CH ₂) 182 (1) (Ph) 184 (1) (Ph)	118.0 (6) 113.4 (6) 113.2 (6)	24 (30) 55 54	eclipsed	diese Arbeit
		165.3 (14)	184 (1) (CH ₂) 184 (1) (Ph) 182 (1) (Ph) 182 (1) (Ph)	116.4 (6) 115.6 (6) 114.1 (6)	33 (19) 63 86		
a) Monokline Modifikation b	¹⁾ C ₂ -Molekülsy	mmetrie ^{c)} O ₁	rthorhombische Mod	ifikation, - 160°C	^{d)} - 20 °C.		

Chem. Ber. 114 (1981)

fen. Dabei läßt sich aus dem Schichtabstand allein nicht ablesen, ob zwischen den Aromaten elektronische Wechselwirkungen stattfinden (wie etwa in Charge-Transfer-Verbindungen¹³⁾ oder in Arylradikal-Kationen¹⁴⁾), oder nicht¹⁵⁾. In 1 überlappen sich die π -Systeme nicht so stark wie etwa bei den meisten Charge-Transfer-Komplexen (s. Abb. 1). Man muß jedoch davon ausgehen, daß die Parallel-Stellung der Phenylringe eine so günstige Anordnung ist, daß die Konformation des Moleküls einschließlich des $P - C1 - P^*$ -Winkels dadurch festgelegt wird. D. h. die gefundene Anordnung der beiden Phenylringe "erzwingt" den beobachteten Winkel-Wert und die gegenseitige Anordnung der PR₃-Gruppen.

In 2 ist eine derartige Konformation wegen des Ringschlusses nicht möglich. Da der Torsionswinkel C2 - P1 - P2 - C4 nur 3.6° beträgt, sind die beiden Ph₂PCH₂-Reste relativ zur P - P-Achse annähernd eclipsed. 2 besitzt im Gegensatz zu 1 keine Molekülsymmetrie im Kristall. Diese Asymmetrie macht sich besonders stark in der unterschiedlichen Stellung der Phenylgruppen zur P1 - C1 - P2-Gruppierung bemerkbar (s. Tab. 4), findet sich aber bereits im P₂C₄-Ring. Aus den Beträgen der Torsionswinkel $C2 - P1 - C1 - P2 (1.9^{\circ})$ und P1 - C1 - P2 - C4 (4.9°) wird eine leichte Verdrillung des $CH_2 - P = C = P - CH_2$ -Fragments aus einer ebenen Anordnung in Richtung einer twist-Konformation des Sechsrings deutlich. Das dritte Methylen-Kohlenstoffatom, C3 bzw. C3A, liegt fehlgeordnet über bzw. unter der least-squares-Ebene der übrigen Ringatome.

Der Bindungswinkel P1 – C1 – P2 in 2 (116.7°) ist der kleinste bei Carbodiphosphoranen beobachtete derartige Winkel. Die beiden Phosphoratome nähern sich dadurch auf nur 280.8 (5) pm. Eine weitere Winkel-Verkleinerung bei gleichen P = C-Abständen erscheint wegen der Abstoßung der Phosphoratome¹⁶⁾ nicht mehr möglich. Die P = C-Bindungslängen in 1 und 2 sind etwas länger als die in Hexaphenylcarbodiphosphoran (s. Tab. 4). Da die Längenänderung unterhalb der Signifikanzgrenze liegt, läßt sich nicht entscheiden, ob mit der Stauchung des Winkels P – C – P eine Verlängerung des P = C-Abstandes einhergeht. Die gefundenen Werte liegen in dem für P = C(sp²)-Doppelbindungen (etwa in nichtstabilisierten Phosphor-Yliden) typischen Bereich¹⁷⁾. Alle nichtylidischen Substituenten an den Phosphoratomen in 1 und 2 sind nicht unerwartet von der P – C-Mehrfachbindung weggebogen (mittlerer C = P – C-Winkel 115.1° in beiden Verbindungen); die Winkel zwischen ihnen (C – P – C) sind dementsprechend verkleinert. Ihre Bindungslängen zu den Phosphoratomen entsprechen Einfachbindungs-Abständen.

Die Kristallgitter

Bei 1 ist die Parallel-Stellung von Phenyl-Ringen nicht auf den molekularen Bereich beschränkt, sondern setzt sich im Kristall fort. Wie Abb. 3 zeigt, sind die Phenylringe C9-C14 bzw. $C9^*-C14^*$ von Nachbarmolekülen zueinander koplanar. Die P=C=P-Ebenen stehen annähernd senkrecht dazu. Es bilden sich also im Kristall Phenylring-Schichten aus, die sich in ähnlicher Weise auch in der monoklinen Modifikation des Hexaphenylcarbodiphosphorans²⁾ finden. Dort war allerdings im Molekül eine koplanare Anordnung zweier Phenylringe mit der P=C=P-Ebene beobachtet worden (s. Tab. 4).

Abb. 3. Projektion eines Ausschnitts aus dem Kristallgitter von 1 auf die xz-Ebene. Die Phenylringe C9-C14 stehen senkrecht zur Papier-(xz-)Ebene. Benachbarte Moleküle sind abwechselnd um $\pm b/2$ verschoben

Die Raumgruppensymmetrie von kristallinem 1 (C2/c) erlaubt eine optimale Packung der Moleküle in der Elementarzelle unter Aufrechterhaltung der zweizähligen Molekülsymmetrie¹⁵⁾. Dagegen kristallisiert 2 in einer Raumgruppe ($P6_1$ bzw. $P6_2$), die für unsymmetrische organische Moleküle sehr ungewöhnlich ist und auch keine optimale Packung ermöglicht. Geht man davon aus, daß 1 und 2 etwa gleich große Molekül-Volumina besitzen (2 sollte nur etwa $4.3 \cdot 10^6$ pm³ größer als 1 sein¹⁵), dann zeigt ein Vergleich der beiden Zell-Volumina (1: $543 \cdot 10^6 \text{ pm}^3/Z$, 2: $568 \cdot 10^6 \text{ pm}^3/Z$), daß der Packungskoeffizient bei 2 trotz niedrigerer Molekülsymmetrie kleiner ist als bei 1. Der Grund für die ungewöhnliche helicale Anordnung der Moleküle (Ausschnitte aus dem Kristallgitter von 2 sind in Lit.⁹⁾ abgebildet) liegt wahrscheinlich nicht im peripheren Bereich der Moleküle, da keine ungewöhnlichen Wechselwirkungen inter- oder intramolekularer Art zwischen den Phenylringen beobachtet werden können, die eine derartige Anordnung begünstigen. Man muß vielmehr davon ausgehen, daß die geringe Verdrillung der $CH_2 - P = C = P - CH_2$ -Einheit, die links- oder rechtshändig sein kann und die sich über die P - C1 - P - C-Torsionswinkel zu den Phenylringen fortsetzt, die Ursache für den beobachteten Kristallbau ist.

In 2 ist der kleine P = C = P-Winkel durch den Ring erzwungen, in 1 jedoch erstaunlich. In offenkettigen Carbodiphosphoranen dürften die bisher gefundenen Bindungswinkel lediglich im jeweiligen Kristallverband einem Energie-Minimum entsprechen und keine Rückschlüsse auf diese Winkel im freien oder solvatisierten Molekül erlauben. Substituenten an den Phosphoratomen sollten den P = C = P-Bindungswinkel nicht nur elektronisch beeinflussen, sondern auch durch Veränderung des Packungs-Verhaltens der entsprechenden Moleküle.

¹⁾ R. Weiss, H. Wolf, U. Schubert und T. Clark, J. Am. Chem. Soc., im Druck.

²⁾ A. T. Vincent und P. J. Wheatley, J. Chem. Soc., Dalton Trans. 1972, 617.

T. A. Albright, P. Hofmann und A. R. Rossi, Z. Naturforsch., Teil B 35, 343 (1980).
^{4) 4a)} C. Glidewell, J. Organomet. Chem. 159, 23 (1978). - ^{4b)} S. W. Kirtley, J. P. Chanton, R. A. Love, D. L. Tipton, T. N. Sorrell und R. Bau, J. Am. Chem. Soc. 96, 7601 (1974).

⁵⁾ H. Schmidbaur, G. Haßlberger, U. Deschler, U. Schubert, Ch. Kappenstein und A. Frank, Angew. Chem. 91, 437 (1979); Angew. Chem., Int. Ed. Engl. 18, 408 (1979).

- ⁶⁾ G. E. Hardy, J. I. Zink, W. C. Kaska und J. C. Baldwin, J. Am. Chem. Soc. 100, 8001 (1978).
- ⁷⁾ E. A. V. Ebsworth, T. E. Fraser, D. W. H. Rankin, O. Gasser und H. Schmidbaur, Chem. Ber. 110, 3508 (1977).
- 8) P. J. Carroll und D. D. Titus, J. Chem. Soc., Dalton Trans. 1977, 824.
- ⁹⁾ H. Schmidbaur, T. Costa, B. Milewski-Mahrla und U. Schubert, Angew. Chem. 92, 557 (1980); Angew. Chem., Int. Ed. Engl. 19, 555 (1980).
- ¹⁰⁾ H. Schmidbaur und Th. Costa, Chem. Ber. 114, 3063 (1981), vorstehend.
- ¹¹⁾ ^{11a} B. Zimmer-Gasser, D. Neugebauer, U. Schubert und H. H. Karsch, Z. Naturforsch., Teil B 34, 1267 (1979). – ^{11b} H. Schmidbaur, E. Weiss und B. Zimmer-Gasser, Angew. Chem. 91, 848 (1979); Angew. Chem., Int. Ed. Engl. 18, 782 (1979). – ^{11c} H. Schmidbaur, J. R. Mandl, J. M. Bassett, G. Blaschke und B. Zimmer-Gasser, Chem. Ber. 114, 433 (1981), und zit. Lit.
- ¹²⁾ L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie, Weinheim 1968.
- ¹³⁾ R. Foster, Organic Charge-Transfer Complexes, Kap. 8, S. 233, Academic Press, New York 1969.
- ¹⁴⁰ ¹⁴³ H. P. Fritz, H. Gebauer, P. Friedrich, P. Ecker, R. Artes und U. Schubert, Z. Naturforsch., Teil B 33, 498 (1978). ^{14b)} Ch. Kröhnke, V. Enkelmann und G. Wegner, Angew. Chem. 92, 941 (1980); Angew. Chem., Int. Ed. Engl. 19, 912 (1980).
- ¹⁵⁾ A. I. Kitaigorodskii, Molecular Crystals and Molecules, Academic Press, New York 1973.
- ¹⁶⁾ C. Glidewell, Inorg. Chim. Acta 12, 219 (1975).
- 17) J. C. J. Bart, J. Chem. Soc. B 1969, 350.

[33/81]